Abstract

Applications and examples of light and electron micrographs illustrating microstructures, which describe metallurgical phenomena in 3D printing/additive manufacturing of metal and alloy products and components, are presented along with extensive process and processing parameter descriptions and review. Examples include microstructures that have defined turbine blade fabrication and optimization over the past half century, including contemporary electron beam melting fabrication of turbine blade alloys and other novel microstructures and architectures, which result from layer by layer, non-equilibrium melt solidification and epitaxial growth involving powder bed laser and electron beam fabrication. Phase transformations and second-phase formation by rapid cooling in metal and alloy components fabricated by laser and electron beam melting technologies are illustrated for a range of high-temperature materials. Using a range of examples, the advantages of fabricating complex (especially porous) biomedical and related commercial products are described. Prospects for future developments of direct 3D metal and alloy droplet printing, as a key component of the digital factory of the future, are described. This technology is compared with more conventional solidification and powder bed layer building thermo-kinetics, especially in the context of large structure and component fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call