Abstract

Carbon is the basis of life on Earth and many technological applications. We computationally report an sp3-hybridization-assembled carbon allotrope constructed by helical triangle chains through the evolutionary structure prediction method. Different from the previous metallic carbon K4, this carbon, called Tri-carbon, is mechanically and dynamically stable at ambient pressure. High ring strain in the carbon triangle blocks forces the C–C bond in Tri-carbon to be a ‘bent bond’, rather than the common single bond in diamond or the π bond in graphite. Unlike the unstrained sp3-hybridization in semiconductive diamond, valence electrons in the ‘bent bond’ are recombined to form extremely anisotropic sp3-hybridized bonds, thus conferring metallicity to Tri-carbon. Under nonhydrostatic conditions, Tri-carbon shows significantly anisotropic ideal tensile and compressive strength. Tri-carbon is expected to be achieved through chemical methods, such as the synthesis of cyclopropane derivatives (e.g. triangulane and tetrahedrane). These methods eliminate the restriction of ultra-high pressure to obtain metallic carbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.