Abstract

Materials genome engineering databases represent fundamental infrastructures for data-driven materials design, in which the data resources should satisfy the FAIR (Findable, Accessible, Interoperable and Reusable) principles. However, a variety of challenges, such as data standardization, veracity and longevity, still impede the progress of data-driven materials science, including both high-throughput experiments and simulations. In this work, we propose a metadata schema for lattice thermal conductivity from first-principles calculations. The calculation workflow for lattice thermal conductivity includes structural optimization and the calculation of interatomic force constants and lattice thermal conductivity. The data generated during the calculation process corresponds to the virtual sample information, virtual source data and processed data, respectively, as specified in the General rule for materials genome engineering data of the Chinese Society for Testing and Materials. Following this general rule, the metadata structure and schema for each action are systematically defined and all metadata elements can be collected completely. Although this metadata schema is specific to lattice thermal conductivity calculations, it provides general rules and insights for other computational materials data in materials genome engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call