Abstract
The metabolism of the human masseter muscle was investigated using phosphorus (31p) magnetic resonance spectroscopy (MRS) during long periods of exercise and recovery. Eleven subjects aged 19 to 28 yr were examined by 31p MRS during four consecutive periods of 13 min each: rest, exercise, recovery 1 and 2. For each subject, a biting force equal to 20% of maximum voluntary biting force was applied and controlled during the exercise period to produce maximum fatigue. 31p MR spectra were localized from a 24 cm3 volume of interest using an image selected in vivo spectroscopy (ISIS) sequence and a 6 cm diameter surface coil placed on the left masseter. Compared to the resting level, the phosphocreatine (PCr) content decreased by 26% during exercise, while the inorganic phosphate (Pi) concentration increased by 65%. During the two recovery periods, the Pi content remained decreased compared with the resting level by 36% and 30%, respectively. The Pi/PCr ratio was increased from 0.30+/-0.04 at rest to 0.63+/-0.13 during exercise while the adenosine triphosphate (ATP)/Pi ratio was decreased. The pH decreased from 7.02+/-0.03 to 6.93+/-0.04 during exercise and returned to control level (7.09+/-0.08) only during the second recovery period. These results suggest that the masseter muscle is characterized by high ATP turnover and, therefore, high oxidative phosphorylative activity in agreement with its constitution of predominantly fatigue resistant type I fibers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have