Abstract

Following infection of B cells, Epstein Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates NAD de novo biosynthesis by driving expression of the metabolic enzyme IDO1 in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match ATP-production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is, thus, a druggable metabolic vulnerability of EBV-driven B cell transformation-opening therapeutic possibilities for EBV-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call