Abstract

Alterations in water availability and drought events as predicted by climate change scenarios will increasingly impact natural communities with effects already emerging at present. Water deficit leads to increasing physiological stress in plants, likely affecting floral development and causing changes in floral morphology, nectar and pollen production or scent. Understanding how these floral traits are altered by water deficit is necessary to predict changes in plant-pollinator interactions and how communities are impacted in the future. Here we employ a meta-analysis approach to synthesize the current evidence of experimental water deficit on floral traits and plant-pollinator interactions. Furthermore, we explore experimental factors potentially increasing heterogeneity between studies and provide ideas how to enhance comparability between studies. In the end, we highlight future directions and knowledge gaps for floral traits and plant-pollinator interactions under water deficit. Our analysis showed consistent decreases in floral size, number of flowers and nectar volume to reduced water availability. Other floral traits such as the start of flowering or herkogamy showed no consistent pattern. This indicates that effects of reduced water availability differ between specific traits that are potentially involved in different functions such as pollinator attraction or efficiency. We found no general decreasing visitation rates with water deficit for flower-visitor interactions. Furthermore, the comparison of available studies suggests that increased reporting of plant stress severity and including more hydraulic and physiological measurements will improve the comparability across experiments and aid a more mechanistic understanding of plant-pollinator interactions under altered environmental conditions. Overall, our results show that water deficit has the potential to strongly affect plant-pollinator interactions via changes in specific floral traits. Linking these changes to pollination services and pollinator performance is one crucial step for understanding how changing water availability and drought events under climate change will alter plant and pollinator communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.