Abstract
In this work, we report a simple and efficient method for synthesis of ZnO nanowires by thermal oxidation of Zn film and their integration with MEMS technologies to fabricate a sensor for acetone vapour detection. ZnO nanowires were prepared by thermal oxidation of sputter deposited Zn film. The nanostructured ZnO was characterized by x-ray diffraction, a scanning electron microscope and room temperature photoluminescence measurements. The ZnO nanowires synthesis process was integrated with MEMS technologies to obtain a sensor for volatile organic compounds, incorporating an on-chip Ni microheater and an interdigited electrode structure. To reduce the heat loss from the on-chip microheater, the sensor was made on a thin silicon diaphragm obtained via a modified reactive ion etching process. This resulted in considerable power saving during sensor operation. For this, a three-mask process was used. The performance of the microheater was simulated on COMSOL and validated experimentally. The sensor has been tested for acetone vapour sensing and the operating parameters were optimized. The sensor has the ability to detect acetone vapour at 5 parts per million (ppm) concentrations when operated at 100 °C. The sensor consumed only 36 mW power and showed a high-sensitivity value of 26.3% for 100 ppm of acetone vapour.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have