Abstract

Floorplanning is an important problem in very large scale integrated-circuit (VLSI) design automation as it determines the performance, size, yield, and reliability of VLSI chips. From the computational point of view, VLSI floorplanning is an NP-hard problem. In this paper, a memetic algorithm (MA) for a nonslicing and hard-module VLSI floorplanning problem is presented. This MA is a hybrid genetic algorithm that uses an effective genetic search method to explore the search space and an efficient local search method to exploit information in the search region. The exploration and exploitation are balanced by a novel bias search strategy. The MA has been implemented and tested on popular benchmark problems. Experimental results show that the MA can quickly produce optimal or nearly optimal solutions for all the tested benchmark problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.