Abstract

Most biclustering algorithms for microarrays data analysis focus on positive correlations of genes. However, recent studies demonstrate that groups of biologically significant genes can show negative correlations as well. So, discovering negatively correlated patterns from microarrays data represents a real need. In this paper, we propose a Memetic Biclustering Algorithm (MBA) which is able to detect negatively correlated biclusters. The performance of the method is evaluated based on two well-known microarray datasets ( Yeast cell cycle and Saccharomyces cerevisiae ), showing that MBA is able to obtain statistically and biologically significant biclusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.