Abstract

Methane would potentially be an inexpensive, widely available electron donor for denitrification of wastewaters poor in organics. Currently, no methanotrophic microbe is known to denitrify. However, aerobic methane oxidation coupled to denitrification (AME-D) has been observed in several laboratory studies. In the AME-D process, aerobic methanotrophs oxidise methane and release organic metabolites and lysis products, which are used by coexisting denitrifiers as electron donors for denitrification. Due to the presence of oxygen, the denitrification efficiency in terms of methane-to-nitrate consumption is usually low. To improve this efficiency the use of a membrane biofilm reactor was investigated. The denitrification efficiency of an AME-D culture in (1) a suspended growth reactor, and (2) a membrane biofilm reactor was studied. The methane-to-nitrate consumption ratio for the suspended culture was 8.7. For the membrane-attached culture the ratio was 2.2. The results clearly indicated that the membrane-attached biofilm was superior to the suspended culture in terms of denitrification efficiency. This study showed that for practical application of the AME-D process, focus should be placed on development of a biofilm reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.