Abstract

Aerobic methane (CH4) oxidation coupled to denitrification (AME-D) is a promising wastewater treatment process for CH4 utilization and nitrogen removal. However, it is unclear which CH4-derived carbons are suitable for the AME-D process and how these organics are metabolized. In this study, metagenomics coupled with a thermodynamic model were used to explore the microorganisms and their metabolic mechanisms in an AME-D membrane biofilm reactor (MBfR) with high nitrogen removal efficiency. Results revealed that the aerobic methanotrophs of Methylomonas with the CH4-based fermentation potential were highly enriched and played an important role in CH4 conversion in the MBfR. Bacteria of Xanthomonadaceae, Methylophilaceae, Bacteroidetes, Rhodocyclaceae, Hyphomicrobium were the main denitrifiers. C1 compounds (methanol, formaldehyde and formate) and CH4-based fermentation products are promising cross-feeding intermediates of the AME-D. Specially, by means of integrating the CH4-based fermentation with denitrification, the minimum amount of CH4 required to remove per mole of nitrate can be further reduced to 1.25 mol-CH4 mol−1-NO3−, even lower than that of methanol. Compared to the choice to secrete methanol, type I aerobic methanotrophs require a 15 % reduction in the amount of oxygen required to secrete fermentation metabolites, but a 72 % increase in the amount of CH4-C released. Based on this trade-off, optimizing oxygen supply strategies will help to construct engineered microbiomes focused on aerobic methanotrophs with CH4-based fermentation potential. This study gives an insight into C and N conversions in the AME-D process and highlights the role of CH4-based fermentation in improving the nitrogen removal efficiency of the AME-D process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.