Abstract

The critical heat flux (CHF) mechanisms for subcooled flow boiling are reviewed. Based on experimental observations reported by previous investigators, the authors have developed a new mechanistic CHF model for vertical subcooled flow at high pressure and high mass velocity. This model is based on the dryout of a thin liquid layer (sublayer) beneath an intermittent vapor blanket due to a Helmholtz instability at the sublayer-vapor interface. The parametric trends of CHF have been explored qualitatively and quantitatively with respect to variations in pressure, mass velocity, subcooling and tube diameter. Comparisons of the model predictions with experimental data for water show good agreement in the simulation of subcooled flow conditions of pressurized water reactors (PWRs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.