Abstract

It has been shown that the onset of frictional instability is characterized by a transition from stable, quasi-static rupture growth to unstable, inertially-controlled high-speed rupture. In particular, slow rupture fronts propagating at a steady speed V_(slow) of the order of 5% of the S-wave speed have been observed prior to the onset of dynamic rupture in recent fault-friction laboratory experiments. However, the precise mechanism governing this V_(slow) stage is unknown. Here we reproduce this phenomenon in numerical simulations of earthquake sequences that incorporate laboratory-derived rate-and-state friction laws. Our simulations show that the V_(slow) stage originates from a stress concentration inherited from the coalescence of interseismic slow creep fronts. Its occurrence is limited to a narrow range of the parameter space but is found in simulations with two commonly-used state-variable evolution laws in the rate-and-state formulation. The sensitivity of the speed V_(slow) to the model parameters suggests that the propagation speed V_(slow) reported in laboratory experiments may also be sensitive to parameters of friction and stress conditions. Our results imply that time and space dimensions associated with the propagation of V_(slow) on natural faults can be as much as a few seconds and several hundred meters, respectively. Hence the detection of such preseismic signals may be possible with near-field high-resolution observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call