Abstract

In the present work, a nonlocal model based on the conformal strain energy, utilizing the conformable derivative definition, has been obtained. The model has two additional free parameters compared to the classical (local) mechanical formulations. The first one specifies the amount of the integer and the noninteger gradient of strain in the strain energy relation, and the second one controls the order of the strain derivatives in the conformable energy relation. The obtained governing (nonlinear) equation has been solved by the Galerkin method and the effects of both free parameters have been shown. As a case study, the bending and buckling of nanobeam structures has been studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.