Abstract
The aim of this paper is to propose laws of trephine operation based on a robot-assisted cutting cornea in order to obtain better microsurgical effects for keratoplasty. Using a trephine robot integrated with a microforce sensor and a handheld trephine manipulator, robotic and manual experiments were performed, with porcine corneas as the test subjects. The effect of trephine operational parameters on the results reflected by the biomechanical response is discussed, and the parameters include linear velocity, rotating angle, and angular velocity. Using probability density functions, the distributions of the manual operational parameters show some randomness, and there is a large fluctuation in the trephine force during the experiments. The biomechanical response shows regular trends in the robotic experiments even under different parameters, and compared to manual trephination, the robot may perform the operation of trephine cornea cutting more stably. Under different operational parameters, the cutting force shows different trends, and the optimal initial parameters that result in better trephine effects can be obtained based on the trends. Based on this derived law, the operational parameters can be set in robotic trephination, and surgeons can also be specially trained to achieve a better microsurgical result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.