Abstract

It is difficult to achieve a stably delicate operation in manual microsurgery, and the aim of this paper is to evaluate the robotic trephination that can open a promising perspective for the development of robotic microsurgical system for keratoplasty. A robot for corneal trephination integrating a force/torque sensor is designed based on manual trephine action. The manual experiments and the robotic experiments about penetrating trephination are performed in porcine eyes. The expected values of operational parameters that are references to the robotic trephination are obtained from the manual experiments using probability density functions (PDFs), including linear velocity, angular velocity, and rotating angle. Considering the meanings of the forces/torques, the results of the manual and robotic experiments such as trephine forces/torques and photomicrographs are compared to evaluate the effectiveness of robotic trephination. The manual trephination shows some randomness and this leads to large fluctuations in the trephine forces/torques during the surgery, but the robot may improve overall outcome of the graft, as it is able to carry out the operation stably and produce a uniform cutting margin. There is potential to improve the biomechanical properties in the delicate microsurgery by using the trephine robot and such devices can assist the surgeon to achieve a consistently high-quality result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.