Abstract

A large portion of the global population has been vaccinated with various vaccines or infected with SARS-CoV-2, the virus that causes COVID-19. The resulting IgG antibodies that target the receptor binding domain (RBD) of SARS-CoV-2 play a vital role in reducing infection rates and severe disease outcomes. Different immune histories result in the production of anti-RBD IgG antibodies with different binding affinities to RBDs of different variants, and the levels of these antibodies decrease over time. Therefore, it is important to have a low-cost, rapid method for quantifying the levels of anti-RBD IgG in decentralized testing for large populations. In this study, we describe a 30 min assay that allows for the quantification of anti-RBD IgG levels in a single drop of finger-prick whole blood. This assay uses force-dependent dissociation of nonspecifically absorbed RBD-coated superparamagnetic microbeads to determine the density of specifically linked microbeads to a protein A-coated transparent surface through anti-RBD IgGs, which can be measured using a simple light microscope and a low-magnification lens. The titer of serially diluted anti-RBD IgGs can be determined without any additional sample processing steps. The limit of detection for this assay is 0.7 ± 0.1 ng/mL referenced to the CR3022 anti-RBD IgG. The limits of the technology and its potential to be further developed to meet the need for point-of-care monitoring of immune protection status are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call