Abstract
The aim of this work is to contribute to elucidating the mechanism underlying gas mixing in the human pulmonary airways. For this purpose, a particular attempt is made to analyse the fluid mechanical aspects of gaseous dispersion using bolus response methods. The experiments were performed on five normal subjects by injection of 10 cm 3 bolus of He, Ar and SF 6 into the latter part of the inspired airstream, in such a way that the whole bolus entered the inspiratory flow and was recovered during the following expiration. The results, presented in a logarithmic plot of dimensionless variance (dispersion of the output bolus) against the Peclet number, show that gaseous dispersion is only slightly dependent on the nature of the tracer gas but is strongly related to flow velocity. This is in agreement with the theory of turbulent or disturbed dispersion; however, it seems that Taylor laminar dispersion does not play a significant role in the airways.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have