Abstract
The primary goal of this study was to develop a parametric model that relates variation in stimulation of the trigeminal nerve to properties of the blink response. We measured blink responses in 17 healthy, adult participants to air puffs directed at the lateral canthus of the eye at five different, log-spaced intensities (3.5-60 PSI). Lid position over time was decomposed into amplitude and velocity components. We found that blink amplitude was systematically related to log stimulus intensity, with the relationship well described by a sigmoidal function. The parameters of the model fit correspond to the slope of the function and the stimulus intensity required to produce half of a maximal blink response (the half-response threshold). There was a reliable increase in the half-response threshold for the contralateral as compared to the ipsilateral blink response. This increase was consistent across participants despite substantial individual differences in the half-response threshold and slope parameters of the overall sensitivity function, suggesting that the laterality effect arises in the neural circuit subsequent to individual differences in sensitivity. Overall, we find that graded mechanical stimulation of the somatosensory trigeminal afferents elicits a graded response that is well described by a simple parametric model. We discuss the application of parametric measurements of the blink response to the detection of group differences in trigeminal sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.