Abstract
This paper discusses the convergence rates of partial update normalized least mean square (NLMS) algorithms for long, finite impulse response (FIR) adaptive filters. We specify the general form of convergence of tap weight vector's mean deviation for white Guassian input, and analyze several best known partial update algorithms' performance. These results are compared with the conventional NLMS algorithm. We further discuss the similarity in update effects of some partial update algorithms and proportionate-type NLMS algorithms. This theoretically demonstrates that for sparse impulse response system identification with white Guassian input, properly designed partial update NLMS algorithms, although need only a fraction of the fully updated NLMS algorithm's computational power, have the potential of achieving better performance than conventional NLMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.