Abstract

A popular approach for predicting RNA secondary structure is the thermodynamic nearest-neighbor model that finds a thermodynamically most stable secondary structure with minimum free energy (MFE). For further improvement, an alternative approach that is based on machine learning techniques has been developed. The machine learning-based approach can employ a fine-grained model that includes much richer feature representations with the ability to fit the training data. Although a machine learning-based fine-grained model achieved extremely high performance in prediction accuracy, a possibility of the risk of overfitting for such a model has been reported. In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates the thermodynamic approach and the machine learning-based weighted approach. Our fine-grained model combines the experimentally determined thermodynamic parameters with a large number of scoring parameters for detailed contexts of features that are trained by the structured support vector machine (SSVM) with the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math> regularization to avoid overfitting. Our benchmark shows that our algorithm achieves the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed. The implementation of our algorithm is available at https://github.com/keio-bioinformatics/mxfold .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.