Abstract

RNA has important structural, functional, and regulatory parts in the cell as well as a critical role in multiple stages of protein synthesis. An RNA molecule's shape largely determines its function in an organic system. Accordingly, computational RNA structural prediction methods are of significant interest. For ab initio cases where only an RNA sequence is known, structure prediction techniques typically employ free energy minimization of a given RNA molecule via a thermodynamic model. Unfortunately, the minimum free energy structure is rarely the native structure. This is thought to be due to errors in the experimentally determined thermodynamic model parameters. RnaPredict is an evolutionary algorithm designed for the prediction of RNA secondary structure; it currently utilizes the stacking-energy thermodynamic models INN and INN-HB. The effect of an enhanced model, efn2, on RnaPredict is investigated. The efn2 model significantly improved the sensitivity and specificity of the majority of structures evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.