Abstract

In the recent years, there has been an increase in applications of non-contact diffusion optical tomography. Especially when the objective is the recovery of fluorescence targets. The non-contact acquisition systems with the use of a CCD-camera produce much denser sampled boundary data sets than fibre-based systems. When model-based reconstruction methods are used, that rely on the inversion of a derivative operator, the large number of measurements poses a challenge since the explicit formulation and storage of the Jacobian matrix could be in general not feasible. This problem is aggravated further in applications, where measurements at multiple wavelengths are used. We present a matrix-free model-based reconstruction method, that addresses the problems of large data sets and reduces the computational cost and memory requirements for the reconstruction. The idea behind the matrix-free method is that information about the Jacobian matrix could be available through matrix times vector products so that the creation and storage of big matrices can be avoided. We tested the method for multiple wavelength fluorescence tomography with simulated and experimental data from phantom experiments, and we found substantial benefits in computational times and memory requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.