Abstract

This proceeding combines selected contributions from participants of the Workshop on Electromagnetic Inverse Problems which was hosted by the University of Manchester in June 2009. The workshop was organized by the two guest editors of this conference proceeding and ran in parallel to the 10th International Conference on Electrical Impedance Tomography, which was guided by Bill Lionheart, Richard Bayford, and Eung Je Woo. Both events shared plenary talks and several selected sessions. One reason for combining these two events was the goal of bringing together scientists from various related disciplines who normally might not attend the same conferences, and to enhance discussions between these different groups. So, for example, one day of the workshop was dedicated to the broader area of geophysical inverse problems (including inverse problems in petroleum engineering), where participants from the EIT community and from the medical imaging community were also encouraged to participate, with great success. Other sessions concentrated on microwave medical imaging, on inverse scattering, or on eddy current imaging, with active feedback also from geophysically oriented scientists. Furthermore, several talks addressed such diverse topics as optical tomography, photoacoustic tomography, time reversal, or electrosensing fish. As a result of the workshop, speakers were invited to contribute extended papers to this conference proceeding. All submissions were thoroughly reviewed and, after a thoughtful revision by the authors, combined in this proceeding. The resulting set of six papers presenting the work of in total 22 authors from 5 different countries provides a very interesting overview of several of the themes which were represented at the workshop. These can be divided into two important categories, namely (i) modelling and (ii) data inversion. The first three papers of this selection, as outlined below, focus more on modelling aspects, being an essential component of any successful inversion, whereas the other three papers discuss novel inversion techniques for specific applications. In the first contribution, with the title A Novel Simplified Mathematical Model for Antennas used in Medical Imaging Applications, the authors M J Fernando, M Elsdon, K Busawon and D Smith discuss a new technique for modelling the current across a monopole antenna from which the radiation fields of the antenna can be calculated very efficiently in specific medical imaging applications. This new technique is then tested on two examples, a quarter wavelength and a three quarter wavelength monopole antenna. The next contribution, with the title An investigation into the use of a mixture model for simulating the electrical properties of soil with varying effective saturation levels for sub-soil imaging using ECT by R R Hayes, P A Newill, F J W Podd, T A York, B D Grieve and O Dorn, considers the development of a new visualization tool for monitoring soil moisture content surrounding certain seed breeder plants. An electrical capacitance tomography technique is employed for verifying how efficiently each plant utilises the water and nutrients available in the surrounding soil. The goal of this study is to help in developing and identifying new drought tolerant food crops. In the third contribution Combination of Maximin and Kriging Prediction Methods for Eddy-Current Testing Database Generation by S Bilicz, M Lambert, E Vazquez and S Gyimóthy, a novel database generation technique is proposed for its use in solving inverse eddy-current testing problems. For avoiding expensive repeated forward simulations during the creation of this database, a kriging interpolation technique is employed for filling uniformly the data output space with sample points. Mathematically this is achieved by using a maximin formalism. The paper 2.5D inversion of CSEM data in a vertically anisotropic earth by C Ramananjaona and L MacGregor considers controlled-source electromagnetic techniques for imaging the earth in a marine environment. It focuses in particular on taking into account anisotropy effects in the inversion. Results of this technique are demonstrated from simulated and from real field data. Furthermore, in the contribution Multiple level-sets for elliptic Cauchy problems in three-dimensional domains by A Leitão and M Marques Alves the authors consider a TV-H1regularization technique for multiple level-set inversion of elliptic Cauchy problems. Generalized minimizers are defined and convergence and stability results are provided for this method, in addition to several numerical experiments. Finally, in the paper Development of in-vivo fluorescence imaging with the matrix-free method, the authors A Zacharopoulos, A Garofalakis, J Ripoll and S Arridge address a recently developed non-contact fluorescence molecular tomography technique where the use of non-contact acquisition systems poses new challenges on computational efficiency during data processing. The matrix-free method is designed to reduce computational cost and memory requirements during the inversion. Reconstructions from a simulated mouse phantom are provided for demonstrating the performance of the proposed technique in realistic scenarios. We hope that this selection of strong and thought-provoking papers will help stimulating further cross-disciplinary research in the spirit of the workshop. We thank all authors for providing us with this excellent set of high-quality contributions. We also thank EPSRC for having provided funding for the workshop under grant EP/G065047/1. Oliver Dorn, Bill Lionheart School of Mathematics, University of Manchester, Alan Turing Building, Oxford Rd Manchester, M13 9PL, UK E-mail: oliver.dorn@manchester.ac.uk, bill.lionheart@manchester.ac.uk Guest Editors

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call