Abstract
<p style='text-indent:20px;'>The purpose of this paper is to provide a careful and accessible exposition of static bifurcation theory for a class of mixed type boundary value problems for diffusive logistic equations with indefinite weights, which model population dynamics in environments with spatial heterogeneity. We discuss the changes that occur in the structure of the positive solutions as a parameter varies near the first eigenvalue of the linearized problem, and prove that the most favorable situations will occur if there is a relatively large favorable region (with good resources and without crowding effects) located some distance away from the boundary of the environment. A biological interpretation of main theorem is that an initial population will grow exponentially until limited by lack of available resources if the diffusion rate is below some critical value; this idea is generally credited to the English economist T. R. Malthus. On the other hand, if the diffusion rate is above this critical value, then the model obeys the logistic equation introduced by the Belgian mathematical biologist P. F. Verhulst. The approach in this paper is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in partial differential equations.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.