Abstract

Flame detectors provide an important layer of protection for personnel in petrochemical plants, but effective placement can be challenging. A mixed-integer nonlinear programming formulation is proposed for optimal placement of flame detectors while considering non-uniform probabilities of detection failure. We show that this approach allows for the placement of fire detectors using a fixed sensor budget and outperforms models that do not account for imperfect detection. We develop a linear relaxation to the formulation and an efficient solution algorithm that achieves global optimality with reasonable computational effort. We integrate this problem formulation into the Python package, Chama, and demonstrate the effectiveness of this formulation on a small test case and on two real-world case studies using the fire and gas mapping software, Kenexis Effigy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.