Abstract

All neonates, whether term or preterm, are prone to hypothermia, which is a major health issue causing many health problems to infants and sometimes even death. Thus, such subjects are imperative to study to help researchers and biologists in neonatology, for developing certain methods, procedures and devices to prevent these abnormal temperature fluctuations to save the neonates from this health threat. To this purpose, a multi-node mathematical model is developed, to provide detailed insights and its applications to study the temperature profiles, thermoregulatory and heat-transfer mechanisms in hypothermic neonates. The model is constructed using the radial form of heat equation along with appropriate boundary and initial conditions. The model solution is obtained with the aid of the variational finite element method followed by the fundamental matrix method. The model outcomes obtained show the temperature fluctuations and tissue responses in hypothermic neonates. Finally, the model outcomes are compared with the published/experimental work to prove the feasibility and validity of the proposed work. Moreover, this work generalizes the several previously published works in the related field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.