Abstract

A time-dependent three-dimensional model of the middle and high latitude ionosphere is described. The density distributions of six ion species (NO+, N 2 + , N 2 + , O+, N+, He+) and the electron and ion temperatures are obtained from a numerical solution of the appropriate continuity, momentum and energy equations. The equations are solved as a function of height for an inclined magnetic field atE andF region altitudes. The three-dimensional nature of the model is obtained by following flux tubes of plasma as they convect or corotate through a moving neutral atmosphere. The model takes account of field-aligned diffusion, cross-field electrodynamic drifts, thermospheric winds, polar wind escape, energy-dependent chemical reactions, neutral composition changes, ion production due to solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow and local heating and cooling processes. The model also takes account of the offset between the geomagnetic and geographic poles. A complete description of the ionospheric model is given, including a derivation of the relevant transport equations, formulas for all of the chemical and physical processes contained in the model, a discussion of the numerical technique, and a description of the required model inputs. The effects that various chemical and physical processes have on the ionosphere are also illustrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call