Abstract

We present a mathematical model of key glucose metabolic pathways in two cells of the human retina: the rods and the retinal pigmented epithelium (RPE). Computational simulations of glucose transporter 1 (GLUT1) inhibition in the model accurately reproduce experimental data from conditional knockout mice and reveal that modification of GLUT1 expression levels of both cells differentially impacts their metabolism. We hypothesize that, under glucose scarcity, the RPE’s energy producing pathways are altered in order to preserve its functionality, impacting the photoreceptors’ outer segment renewal. On the other hand, when glucose is limited in the rods, aerobic glycolysis is preserved, which maintains the lactate contribution to the RPE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call