Abstract

Positive psychology recognizes happiness as a construct comprising hedonic and eudaimonic well-being dimensions. Integrating these components and a set of theory-led assumptions, we propose a mathematical model, given by a system of nonlinear ordinary differential equations, to describe the dynamics of a person's happiness over time. The mathematical model offers insights into the role of emotions for happiness and why we struggle to attain sustainable happiness and tread the hedonic treadmill oscillating around a relative stable level of well-being. The model also indicates that lasting happiness may be achievable by developing constant eudaimonic emotions or human altruistic qualities that overcome the limits of the homeostatic hedonic system; in mathematical terms, this process is expressed as distinct dynamical bifurcations. This mathematical description is consistent with the idea that eudaimonic well-being is beyond the boundaries of hedonic homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.