Abstract
Wilhelm Weber’s electrodynamics is an action-at-a-distance theory which has the property that equal charges inside a critical radius become attractive. Weber’s electrodynamics inside the critical radius can be interpreted as a classical Hamiltonian system whose kinetic energy is, however, expressed with respect to a Lorentzian metric. In this article we study the Schrödinger equation associated with this Hamiltonian system, and relate it to Weyl’s theory of singular Sturm–Liouville problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.