Abstract

This paper describes the architecture design of novel massively parallel self-organizing map (SOM) neural networks. The proposed architecture, referred to as the planar SOM (PSOM), is described as a soft IP core synthesized in VHDL. The SOM neural network’s size and the input data vectors’ dimension are adjustable parameters. In this work, several SOM architectures are synthesized and their performance is evaluated for Xilinx Virtex-7 FPGAs. The presented hardware architecture allows online learning and can be easily adapted to a large variety of SOM topologies without a considerable design effort. A [Formula: see text] SOM hardware is validated through the FPGA implementation and its performances with an estimated working frequency of 297[Formula: see text]MHz for a 23-element input vector will reach 21,970 MCUPS in the learning phase and 35,902 MCPS in the recall one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.