Abstract

We prove uniqueness of a martingale problem with boundary conditions on a simplex associated to a differential operator with an unbounded drift. We show that the solution of the martingale problem remains absorbed at the boundary once it attains it, and that, after hitting the boundary, it performs a diffusion on a lower dimensional simplex, similar to the original one. We also prove that in the diffusive time scale condensing zero-range processes evolve as this absorbed diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.