Abstract
Vehicular Edge Computing (VEC) enables the integration of edge computing facilities in vehicular networks (VNs), allowing data-intensive and latency-critical applications and services to end-users. Though VEC brings several benefits in terms of reduced task computation time, energy consumption, backhaul link congestion, and data security risks, VEC servers are often resource-constrained. Therefore, the selection of proper edge nodes and the amount of data to be offloaded becomes important for having VEC process benefits. However, with the involvement of high mobility vehicles and dynamically changing vehicular environments, proper VEC node selection and data offloading can be challenging. In this work, we consider a joint network selection and computation offloading problem over a VEC environment for minimizing the overall latency and energy consumption during vehicular task processing, considering both user and infrastructure side energy-saving mechanisms. We have modeled the problem as a sequential decision-making problem and incorporated it in a Markov Decision Process (MDP). Numerous vehicular scenarios are considered based upon the users' positions, the states of the surrounding environment, and the available resources for creating a better environment model for the MDP analysis. We use a value iteration algorithm for finding an optimal policy of the MDPs over an uncertain vehicular environment. Simulation results show that the proposed approaches improve the network performance in terms of latency and consumed energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.