Abstract

Pebbly mudstones are a conspicuous element of sedimentary sequences deposited in different tectonic settings and sedimentary environments. Whereas for many diamictites a glacial origin seems plausible, the problem to distinguish glacial from non-glacial diamictites is often difficult for Precambrian examples where palaeoclimatic constraints are generally lacking. This article documents an Eocene pebbly mudstone of the Southhelvetic nappes of eastern Central Switzerland (Blockmergel) for which a glacial origin can be firmly rejected and which may thus serve as an example for non-glacial marine diamictites and their sedimentary and palaeotectonic environment. The Blockmergel are interpreted as the product of gravitational deposition of single blocks across steep palaeo-slopes (subaqueous rockfall) into a basin otherwise dominated by suspension settling sedimentation. The Blockmergel occur within the basal part of the early fill of the North Alpine Foreland Basin, which constitutes a deepening upward sequence above basal shallow marine limestones. The Blockmergel demonstrate substantial Middle to Late Eocene sub-aerial erosion and fluvial transport (producing the rounded pebbles) and local extensional fault movements in the proximal part of the incipient North Alpine Foreland Basin. They are capped sharply by forced-regressive shoreface sandstones and the whole sequence thus demonstrates locally very shallow to subaerial conditions within an otherwise rather deep hemipelagic marine basin. This, and the extensional fault movements, are linked to a long-standing feature of Helvetic palaeogeography—the Southhelvetic swell zone. That this swell still operated during the Priabonian i.e. shortly before finally being overthrust by the orogenic wedge of the evolving Alpine orogen is a new element in Alpine palaeotectonics and seems to highlight the importance of the reactivation of inherited palaeotectonic faults. Finally, the example of the Blockmergel is suggested as a useful analogue to help distinguishing glacial-sourced from slope-derived diamictites in the Neoproterozoic sedimentary record and may thus help resolving the “diamictite dichotomy”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call