Abstract

Alternatives to CMOS logic circuit implementations are under research for future scaled electronics. Memristor crossbar-based logic circuit is one of the promising candidates to at least partially replace CMOS technology, which is facing many challenges such as reduced scalability, reliability, and performance gain. Memristor crossbar offers many advantages including scalability, high integration density, nonvolatility, etc. The state-of-the-art for memristor crossbar logic circuit design can only implement simple and small circuits. This paper proposes a mapping methodology of large Boolean logic circuits on memristor crossbar. Appropriate place-and-route schemes, to efficiently map the circuits on the crossbar, as well as several optimization schemes are also proposed. To illustrate the potential of the methodology, a multibit adder and other nine more complex benchmarks are studied; the delay, area and power consumption induced by both crossbar and its CMOS control part are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.