Abstract
In this paper, we define a birth–death‐modulated Markovian arrival process (BDMMAP) as a Markovian arrival process (MAP) with an underlying birth–death process. It is proved that the zeros of det(zI − A(z)) in the unit disk are real and simple. In order to analyze a BDMMAP/G/1 queue, two spectral methods are proposed. The first one is a bisection method for calculation of the zeros from which the boundary vector is derived. The second one is the Fourier inversion transform of the probability generating function for the calculation of the stationary probability distribution of the queue length. Eigenvalues required in this calculation are obtained by the Duran–Kerner–Aberth (DKA) method. For numerical examples, the stationary probability distribution of the queue length is calculated by using the spectral methods. Comparisons of the spectral methods with the currently best methods available are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have