Abstract

Quantum computational logics are special examples of quantum logic where formulas are supposed to denote pieces of quantum information (qubit-systems or mixtures of qubit-systems), while logical connectives are interpreted as reversible quantum logical gates. Hence, any formula of the quantum computational language represents a synthetic logical description of a quantum circuit. We investigate a many-valued approach to quantum information, where the basic notion of qubit has been replaced by the more general notion of qudit. The qudit-semantics allows us to represent as reversible gates some basic logical operations of Łukasiewicz many-valued logics. In the final part of the article we discuss some problems that concern possible implementations of gates by means of optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.