Abstract
Quantum computational logics are special examples of quantum logic where formulas are supposed to denote pieces of quantum information (qubit-systems or mixtures of qubit-systems), while logical connectives are interpreted as reversible quantum logical gates. Hence, any formula of the quantum computational language represents a synthetic logical description of a quantum circuit. We investigate a many-valued approach to quantum information, where the basic notion of qubit has been replaced by the more general notion of qudit. The qudit-semantics allows us to represent as reversible gates some basic logical operations of Łukasiewicz many-valued logics. In the final part of the article we discuss some problems that concern possible implementations of gates by means of optical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.