Abstract

From the literature of biomechanics, it is now clear that humans use elevating, lowering and delayed-lowering strategies in order to maintain stability during perturbed walking. The main purpose of this study is to provide insights into the role of manipulability in selection of these strategies. A 37 degrees of freedom (DoFs) model of the human body is developed to evaluate the manipulability indices during walking. The model is considered as a tree-like structure and its forward kinematics equations and the Jacobian are derived based on the Denavit-Hartenberg (DH) convention. A hybrid genetic algorithm (HGA) is then employed to map the experimental kinematics of a human to the model. The kinematic and dynamic manipulability indices of the swing phase of walking are evaluated concentrating on early, mid and late swing phases. The results indicate that the manipulability indices can characterize well the selection of elevating, lowering and delayed-lowering strategies at different stages of the swing phase. The results kinematically describe the reason of selecting delayed-lowering strategy at mid-swing phase that was not obvious in previous studies. Moreover, the results show that at mid-swing phase of walking the kinematic maneuverability is lower than that of the early and late swing phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.