Abstract

Bristol Bay, Alaska, is home to the largest sockeye salmon (Oncorhynchus nerka) fishery in the world, harvesting an average of 25 million fish with an ex-vessel value exceeding US$100 million annually. Daily fishing effort is adaptively managed to achieve stock-specific escapement goals. Traditional methods for defining these goals relied on stock–recruitment analysis; however, this approach often ignores three fundamental sources of uncertainty: estimation error, implementation uncertainty, and time-varying recruitment dynamics. To compare escapement goal alternatives, we conducted a management strategy evaluation that simulated time-varying recruitment across production regimes and replicated the daily in-season management process. Results indicate (i) implementation uncertainty can be reasonably approximated with simple rules reflecting fishery managers’ daily decision process; (ii) despite implementation uncertainty, escapement goals are likely to be realized or exceeded, on average; and (iii) management strategies targeting escapement levels estimated by traditional methods to produce maximum sustainable yield may result in lower catch and greater variability in fishing opportunity compared with a strategy with defining high and low escapement goals that are targeted depending on assessed run size, which may maximize future catch while reducing the frequency of extremely low harvests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call