Abstract

This is the first report, to our knowledge, to reveal important factors by which members of the Cucurbitaceae family, such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita pepo), squash (C. pepo), and zucchini (C. pepo), are selectively polluted with highly toxic hydrophobic contaminants, including organochlorine insecticides and dioxins. Xylem sap of C. pepo ssp. pepo, which is a high accumulator of hydrophobic compounds, solubilized the hydrophobic compound pyrene into the aqueous phase via some protein(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of xylem sap of two C. pepo subspecies revealed that the amount of 17-kD proteins in C. pepo ssp. pepo was larger than that in C. pepo ssp. ovifera, a low accumulator, suggesting that these proteins may be related to the translocation of hydrophobic compounds. The protein bands at 17 kD contained major latex-like proteins (MLPs), and the corresponding genes MLP-PG1, MLP-GR1, and MLP-GR3 were cloned from the C. pepo cultivars Patty Green and Gold Rush. Expression of the MLP-GR3 gene in C. pepo cultivars was positively correlated with the band intensity of 17-kD proteins and bioconcentration factors toward dioxins and dioxin-like compounds. Recombinant MLP-GR3 bound polychlorinated biphenyls immobilized on magnetic beads, whereas recombinant MLP-PG1 and MLP-GR1 did not. These results indicate that the high expression of MLP-GR3 in C. pepo ssp. pepo plants and the existence of MLP-GR3 in their xylem sap are related to the efficient translocation of hydrophobic contaminants. These findings should be useful for decreasing the contamination of fruit of the Cucurbitaceae family as well as the phytoremediation of hydrophobic contaminants.

Highlights

  • This is the first report, to our knowledge, to reveal important factors by which members of the Cucurbitaceae family, such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita pepo), squash (C. pepo), and zucchini (C. pepo), are selectively polluted with highly toxic hydrophobic contaminants, including organochlorine insecticides and dioxins

  • Numerous agricultural fields and crops have been contaminated with persistent organic pollutants (POPs), including dioxins, such as polychlorinated dibenzop-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs); dioxin-like compounds, such as coplanar polychlorinated biphenyls (PCBs) and the insecticide dichlorodiphenyltrichloroethane; drins, such as aldrin, dieldrin, and endrin; and chlordane (Hashimoto, 2005; Uegaki et al, 2006; Hilber et al, 2008)

  • The bioconcentration factors (BCFs) used here were calculated by dividing the concentration of PCDDs, PCDFs, and PCBs in aerial parts including leaves and stems by the concentration in soil

Read more

Summary

Introduction

This is the first report, to our knowledge, to reveal important factors by which members of the Cucurbitaceae family, such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita pepo), squash (C. pepo), and zucchini (C. pepo), are selectively polluted with highly toxic hydrophobic contaminants, including organochlorine insecticides and dioxins. Previous studies reported that members of the Cucurbitaceae family, C. pepo, which includes pumpkin and zucchini, accumulated higher levels of PCDDs and PCDFs (Hülster et al, 1994; Inui et al, 2008), 2,2-bis(p-chlorophenyl) 1,1-dichloroethylene (p,p9-DDE; White et al, 2003), PCBs (Aslund et al, 2008; Inui et al, 2008), chlordane (Mattina et al, 2004), and drins (Otani et al, 2007) compared with the levels in other plant species It appears that the Cucurbitaceae family has unique mechanisms of POP uptake and translocation. The aim of this research is to provide a means of preventing cucumber, melon, watermelon, pumpkin, and zucchini fruits from being contaminated by POPs

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.