Abstract

The quantum hydrodynamic model for charged particle systems is extended to the cases of nonzero magnetic fields. In this way, quantum corrections to magnetohydrodynamics are obtained starting from the quantum hydrodynamical model with magnetic fields. The importance of the quantum corrections is described by a parameter H which can be significant in dense astrophysical plasmas. The quantum magnetohydrodynamic model is analyzed in the infinite conductivity limit. The conditions for equilibrium in ideal quantum magnetohydrodynamics are established. Translationally invariant exact equilibrium solutions are obtained in the case of the ideal quantum magnetohydrodynamic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call