Abstract

This paper proposes a methodology to design a physiologically realistic computer simulator of images of the left ventricle myocardium based on a patient-specific biomechanical model. The simulator takes a magnetic resonance image of a given patient at end diastole, uses a manual segmentation of that image to model the geometry of the myocardium and sets the parameters of the constitutive model used for biomechanical simulation according to a regional labeling of the contractility of the myocardium for that patient. The simulated deformations are used to warp the magnetic resonance dataset throughout the cardiac cycle to generate different image modalities. The simulator is validated by quantifying its ability to model actual deformations in a set of patients affected by an acute myocardial infarction. Specifically a high correlation has been encountered between the ejection fraction derived from the simulated end systolic deformation of the myocardium and the myocardium segmented from actual data. Additionally, most of the parameters that describe the simulated deformation compare well with reported values. Overall, the simulator is intended as a testbed for extensive comparisons of myocardial motion tracking methods due to its ability to relate the impaired myocardial function with the associated ventricular remodeling, a novel contribution in the literature of cardiac image simulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.