Abstract

In medium-speed wire electrical discharge machining (MS-WEDM), wire in the area near the guide wheel and between the two guide wheels obviously form the wire bending deformation due to wire tension, electrostatic force, electrodynamics force, hydrodynamic force, temperature increment, etc. Besides, the wire deflection would have a direct influence on the machining accuracy, productivity and stability. In this paper, first of all, main causes of wire electrode deformation are proposed to better understand its fundamental mechanism. Second, two macroscopic mechanical models of wire deflection are developed in the area near the guide wheel and between the two guide wheels considering temperature increment and wire vibration in machining 20mm-thickness workpiece process, respectively. Moreover, the numerical solution of deflection in the area near the guide wheel and the theoretical solution of deflection between the two guide wheels has been worked out. Then, the analysis of the variation trend of wire deflection and the influences of wire deflection on the machining process have been conducted. Eventually, from the confirmation experiment and comparison with other researchers’ models, it has been proved that the macroscopic mechanical models of wire deflection in MS-WEDM process are reasonable and reliable. In addition, according to macroscopic mechanical models, some of the practical approaches of reducing wire deflection have been proposed to improve machining accuracy, and these high-precision models can be applied into NC system to set a compensation for wire deflection in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call