Abstract
In this work we present a machine learning pipeline for the detection of multiple sclerosis course from a collection of inexpensive and non-invasive measures such as clinical scales and patient-reported outcomes. The proposed analysis is conducted on a dataset coming from a clinical study comprising 457 patients affected by multiple sclerosis. The 91 collected variables describe patients mobility, fatigue, cognitive performance, emotional status, bladder continence and quality of life. A preliminary data exploration phase suggests that the group of patients diagnosed as Relapsing-Remitting can be isolated from other clinical courses. Supervised learning algorithms are then applied to perform feature selection and course classification. Our results confirm that clinical scales and patient-reported outcomes can be used to classify Relapsing-Remitting patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.