Abstract

We describe how to use several machine learning techniques organized in a learning pipeline to segment and identify cell membrane structures from cryo electron tomograms. These tomograms are difficult to analyze with traditional segmentation tools. The learning pipeline in our approach starts from supervised learning via a special convolutional neural network trained with simulated data. It continues with semi-supervised reinforcement learning and/or a region merging technique that tries to piece together disconnected components belonging to the same membrane structure. A parametric or non-parametric fitting procedure is then used to enhance the segmentation results and quantify uncertainties in the fitting. Domain knowledge is used in generating the training data for the neural network and in guiding the fitting procedure through the use of appropriately chosen priors and constraints. We demonstrate that the approach proposed here works well for extracting membrane surfaces in two real tomogram datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.