Abstract

BackgroundPeople with monogenic familial hypercholesterolemia (FH) are at an increased risk of premature coronary heart disease and death. With a prevalence of 1:250, FH is relatively common; but currently there is no population screening strategy in place and most carriers are identified late in life, delaying timely and cost-effective interventions. ObjectivesThe purpose of this study was to derive an algorithm to identify people with suspected monogenic FH for subsequent confirmatory genomic testing and cascade screening. MethodsA least absolute shrinkage and selection operator logistic regression model was used to identify predictors that accurately identified people with FH in 139,779 unrelated participants of the UK Biobank. Candidate predictors included information on medical and family history, anthropometric measures, blood biomarkers, and a low-density lipoprotein cholesterol (LDL-C) polygenic score (PGS). Model derivation and evaluation were performed in independent training and testing data. ResultsA total of 488 FH variant carriers were identified using whole-exome sequencing of the low-density lipoprotein receptor, apolipoprotein B, apolipoprotein E, proprotein convertase subtilisin/kexin type 9 genes. A 14-variable algorithm for FH was derived, with an area under the curve of 0.77 (95% CI: 0.71-0.83), where the top 5 most important variables included triglyceride, LDL-C, apolipoprotein A1 concentrations, self-reported statin use, and LDL-C PGS. Excluding the PGS as a candidate feature resulted in a 9-variable model with a comparable area under the curve: 0.76 (95% CI: 0.71-0.82). Both multivariable models (w/wo the PGS) outperformed screening-prioritization based on LDL-C adjusted for statin use. ConclusionsDetecting individuals with FH can be improved by considering additional predictors. This would reduce the sequencing burden in a 2-stage population screening strategy for FH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.