Abstract

BackgroundA pathogenic variant in LDLR, APOB, or PCSK9 can be identified in 30% to 80% of patients with clinically-diagnosed familial hypercholesterolemia (FH). Alternatively, ∼20% of clinical FH is thought to have a polygenic cause. The cardiovascular disease (CVD) risk associated with polygenic versus monogenic FH is unclear. ObjectivesThis study evaluated the effect of monogenic and polygenic causes of FH on premature (age <55 years) CVD events in patients with clinically diagnosed FH. MethodsTargeted sequencing of genes known to cause FH as well as common genetic variants was performed to calculate polygenic scores in patients with “possible,” “probable,” or “definite” FH, according to Dutch Lipid Clinic Network Criteria (n = 626). Patients with a polygenic score ≥80th percentile were considered to have polygenic FH. We examined the risk of unstable angina, myocardial infarction, coronary revascularization, or stoke. ResultsA monogenic cause of FH was associated with significantly greater risk of CVD (adjusted hazard ratio: 1.96; 95% confidence interval: 1.24 to 3.12; p = 0.004), whereas the risk of CVD in patients with polygenic FH was not significantly different compared with patients in whom no genetic cause of FH was identified. However, the presence of an elevated low-density lipoprotein cholesterol (LDL-C) polygenic risk score further increased CVD risk in patients with monogenic FH (adjusted hazard ratio: 3.06; 95% confidence interval: 1.56 to 5.99; p = 0.001). ConclusionsPatients with monogenic FH and superimposed elevated LDL-C polygenic risk scores have the greatest risk of premature CVD. Genetic testing for FH provides important prognostic information that is independent of LDL-C levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call