Abstract
Tripping is the largest cause of falls, and low swing foot ground clearance during the mid-swing phase, particularly at the critical gait event known as Minimum Foot Clearance (MFC), is the major risk factor for tripping-related falls. Intervention strategies to increase MFC height can be effective if applied in real-time based on feed-forward prediction. The current study investigated the capability of machine learning models to classify the MFC into various categories using toe-off kinematics data. Specifically, three MFC sub-categories (less than 1.5 cm, between 1.5 and 2.0 cm, and higher than 2.0 cm) were predicted to apply machine learning approaches. A total of 18,490 swing phase gait cycles’ data were extracted from six healthy young adults, each walking for 5 min at a constant speed of 4 km/h on a motorized treadmill. K-Nearest Neighbor (KNN), Random Forest, and XGBoost were utilized for prediction based on the data from toe-off for five consecutive frames (0.025 s duration). Foot kinematics data were obtained from an inertial measurement unit attached to the mid-foot, recording tri-axial linear accelerations and angular velocities of the local coordinate. KNN, Random Forest, and XGBoost achieved 84%, 86%, and 75% accuracy, respectively, in classifying MFC into the three sub-categories with run times of 0.39 s, 13.98 s, and 170.98 s, respectively. The KNN-based model was found to be more effective if incorporated into an active exoskeleton as the intelligent system to control MFC based on the preceding gait event, i.e., toe-off, due to its quicker computation time. The machine learning-based prediction model shows promise for the prediction of critical MFC data, indicating higher tripping risk.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have