Abstract
In this work, we propose a deep learning (DL)-based constitutive model for investigating the cyclic viscoelastic-viscoplastic-damage behavior of nanoparticle/epoxy nanocomposites with moisture content. For this, a long short-term memory network is trained using a combined framework of a sampling technique and a perturbation method. The training framework, along with the training data generated by an experimentally validated viscoelastic-viscoplastic model, enables the DL model to accurately capture the rate-dependent stress–strain relationship and consistent tangent moduli. In addition, the DL-based constitutive model is implemented into finite element analysis. Finite element simulations are performed to study the effect of load rate and moisture content on the force–displacement response of nanoparticle/epoxy samples. Numerical examples show that the computational efficiency of the DL model depends on the loading condition and is significantly higher than the conventional constitutive model. Furthermore, comparing numerical results and experimental data demonstrates good agreement with different nanoparticle and moisture contents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.